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Abstract. We use the generalised coherent state distribution to study in phase space the 
eigenfunctions of non-integrable Hamiltonians. The methods available in the Weyl group 
(the Husimi distribution) are extended to the more complicated phase spaces that arise from 
other Lie groups. We demonstrate the feasibility of numerical calculations in two models 
with W2 and SU(3) symmetries, emphasising the similarities and showing the emergence of 
classical invariant structures in the semiclassical limit. 

1. Introduction 

The understanding of the classicalquantum correspondence for non-integrable systems 
is a subject of considerable current interest which still has wide gaps. In particular, 
the way in which a wavepacket, following a classical trajectory by way of Ehrenfest’s 
theorem, spreads and interferes with itself when this trajectory is chaotic to finally 
produce as t --+ 00 a stationary eigenstate is not understood. There is no Bohr- 
Sommerfeld quantisation rule for non-integrable systems [l]. 

In recent years most efforts devoted to the study of the quantum properties of 
classically chaotic systems were focused on the statistical properties of the spectrum 
[ 2 4 ] ,  and methods to relate these properties to the periodic orbit structure have been 
devised [5-91. Wavefunctions, however, provide a richer context for the study of the 
correspondence principle since we expect the invariant structures of classical mechanics 
to be reflected in the stationary states of quantum mechanics. 

For integrable systems it is well known that eigenfunctions are associated with the 
quantised invariant tori. The actions of these tori provide a complete set of quantum 
numbers through the EBK quantisation rules. 

In the non-integrable case the situation is far more complex. The phase space 
contains an intricate mixture of stable and unstable periodic trajectories, tori, cantori 
and chaotic regions. No simple association between these structures and stationary 
states is known. 

For the chaotic regions the simple hypothesis of a uniform, ergodic-like 
distribution-the celebrated hypothesis of Berry and Voros [ 11-breaks down due 
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to the presence of unstable periodic trajectories [lo, 111 and cantori [12-151. Both 
structures, although classically of measure zero on the energy shell, have a dominant 
influence on the wavefunctions and result in a completely different quantum and clas- 
sical long-time behaviour. Based on the periodic orbit sum of Gutzwiller [16], recent 
studies [17-201 have begun to provide a theoretical understanding of the role played 
by unstable periodic trajectories and the associated homoclinic motion [ 191. 

These problems are usually considered in the framework of the A -P 0 limit of 
quantum mechanics. However, a wider class of semiclassical limits arises in connection 
to 1/N expansions (see [21] and references therein). Their main difference with the 
A + 0 limit is the structure of the phase space. In the usual case the underlying group 
is the Weyl group which leads to a ‘flat’ phase space. For other groups the semiclassical 
limit leads to phase spaces with a more complicated structure which corresponds to the 
coadjoint orbits of the group. The problem of recovering quantum properties of such 
systems from its N + CO limit are exactly those encountered in semiclassical mechanics 
and the issues related to chaotic behaviour will have to be addressed. 

The purpose of this paper is to develop the methods that allow the study of wave- 
functions in these generalised phase spaces. We use coherent states of Lie groups [22] 
to represent the eigenstates as a positive definite phase space distribution and study 
numerically the associated projections and Poincare sections. To keep the classical 
dynamics as manageable as possible we restrict our considerations to phase spaces of 
dimension four with a conserved Hamiltonian. 

The outline of the paper is as follows. In section 2, after a brief survey of the 
Husimi distribution for the group W,, we generalise it for semisimple Lie groups and 
show how to calculate its projections and Poincare sections. In section 3 we study the 
specific examples of W, and SU(3) and we emphasise the similarity between the two 
cases. W, is of course the group underlying the treatment of coupled oscillator models, 
while SU(3) is more related to model nuclear Hamiltonians with interacting fermions. 
The parallel treatment aims at stressing the fact that methods used for the study of 
chaos in one of them can be also used in the other. In section 4 we present a collection 
of numerical results and discussion for the wavefunctions, projections and sections for 
two models with these symmetries. 

2. Phase space representation of eigenfunctions 

2.1. The simple case of the Weyl W ,  group 

In this section we review some basic properties of W, coherent states and the associated 
distributions in phase space. 

For a system with one degree of freedom, we define 

1 
fi+ = - ( d / b o  - ibo$) A d 2  

and the coherent state 

where al0) = 0 and z is a complex number and Z its conjugate. The parameter bo 
characterises the width of the localised wavepacket lz) while the real and imaginary 
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parts of z are related to the classical phase space coordinates (p,q) by 

1 
Z = - (q/bo - ibop) 4 (2.3) 

and thus coordinates (z, Z) span the canonical phase space. The Husimi distribution [23] 
of a given state Iw) is defined as 

where the norm is 

(zlz) = exp (;) . 

(2.4) 

(2.5) 

The coherent state lz) is a Gaussian wavepacket centred at the phase space point (p, q )  
and with dispersions 

Therefore, (2.4) gives the probability for the wavefunction y to be in the phase space 
cell AqAp centred at (p, q),  compatible with the uncertainty principle requirements. 

There is a different way to represent a state in phase space: the Wigner distribu- 
tion [24,25]. It is defined as 

(2.7) 

and carries in phase space all the quantum information associated with the density 
matrix p(x ,  x f ) .  The relationship of the Wigner and Husimi distributions is given by 

where 

is the Wigner distribution of the normalised coherent state I z ) / m .  The Husimi 
distribution of a state Iw) is thus obtained by smoothing its Wigner distribution with 
a Gaussian. From (2.9) we see that by changing bo we can change the width of the 
smoothing in the p and q directions while maintaining AqAp constant. On the contrary, 
letting ft -+ 0 sharpens both scales at once. 

According to its definition (2.4), the Husimi distribution is a positive definite 
function in phase space. For systems with one degree of freedom with a conserved 
Hamiltonian the Husimi distribution of an eigenstate vi of energy E, can be shown [26] 
to be localised on the constant energy contour E ,  according to the semiclassical formula 

(2.10) 
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where u ( z ,  2)  is the modulus of the phase space velocity U = laH,,/dzl, H,, is the classical 
Hamiltonian and c is a normalisation. This formula has been further discussed and 
generalised to the groups SU(2) and SU(1,l) in [27]. 

This simple Gaussian peaking on the classical trajectory should be contrasted with 
that of the semiclassical Wigner function, studied by Berry [28], which shows Airy-type 
behaviour on the tori, sharp oscillations on the inside and an exponential decay on the 
outside. 

This difference is clearly illustrated when we consider the distribution of a pure 
oscillator state In). Then (2.4) yields 

(2.1 1 )  
( z ~ / h ) "  eczilfi 

n!  
W,(Z,Z) = 

This is a Poisson distribution with its maximum at z 2 / h  = n. For large values of n, 
this maximum becomes very sharp, with a width 4. The Wigner distribution of the 
oscillator state is given instead by 

where L, are the Laguerre polynomials. It has very strong oscillations and takes 
positive and negative values. Although it has a relative maximum close to the classical 
trajectory zZ/h = n, it assumes its largest value at the origin, where nothing happens 
classically. 

2.2. Husimi distributions for  general Lie groups 

The simple Husimi distribution defined in the previous section corresponds to the 
coherent states of the Weyl group W,. One immediate generalisation is the extension 
to the W, group which allows the treatment of systems with many independent degrees 
of freedom spanned by canonical pairs (pi, qi). 

Other extensions more appropriate for the treatment of many-body or finite spin 
systems occur when the Hamiltonian can be written in terms of the generators of a Lie 
group G. In this case the semiclassical limit is obtained as some parameter of the group 
representation N ,  which can be identified in each case, goes to infinity. The classical 
phase space that arises from this procedure is a symplectic manifold whose geometrical 
properties are characteristic of the group [29]. In particular it has a finite volume for 
compact groups. We now provide the essential steps of this construction [22]. 

For semisimple groups the canonical form of the commutation relations allow the 
splitting of the algebra 9 into raising, lowering and weight operators, (Ef, E - ,  H). For 
our purposes, the coherent states of a given representation are conveniently defined as 

(2.13) 

where E: are the raising operators in the algebra and 10) is the minimum weight state 
of an irreducible representation of G characterised by 

(2.14) 
E;  IO) = 0. 
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H, are the commuting weight operators spanning the Cartan (or isotropy) subalgebra 
of 9'. The coordinates z span a manifold A' which has the following important 
properties : 

(i) there is a one-to-one correspondence between A' and the set of points generated 
by the action of the coadjoint representation of the group (the so-called coadjoint 
orbit) ; 

(ii) it can be shown that coadjoint orbits of nilpotent and compact semisimple 
Lie groups are real manifolds of even dimension having a closed non-degenerate 
(G-invariant) two-form, i.e, they are symplectic manifolds. 

Hence the set of coherent states are parametrised by points of a space A' which can 
be considered as a generalised version of the canonical phase space for Hamiltonians 
written in terms of the generators of a given Lie group G. 

All the geometrical quantities on A' are related to the norm function ( z l z )  which 
can be explicitly evaluated for each representation. The antisymmetric non-degenerate 
two-form R is defined as 

R = 2iwiJdzi A d i j  (2.15) 

where 

The generalised Poisson bracket on A' is 

(2.17) 

where wij is the inverse matrix of U''. 

A basis of an irreducible representation can be generated, as is well known, by 
repeated action of the raising generators on the minimum weight state. This basis is 
appropriate for quantum mechanical calculations if a Hamiltonian is given as a function 
of the generators of G. Coherent states provide an alternative representation [30]. In 
this representation, the wavefunction 

is given by an analytic function of the coset coordinates { z } .  The operators can be 
represented either by functions on t& as 

(2.19) 

or by differential operators acting on (2.18). The important feature of this representation 
is the fact that it allows a very straightforward emergence of the classical limit. This is 
based on the following property [21] 

( Z I A B  I z )  1 d A d B  
= A B + -  wij--+ . . .  (44  N azi azj (2.20) 
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that, to order zero in 1/N the product of operators factors. The 1/N 
(2.20) determines the limit for commutators as 

where the bracket is the symplectic structure (2.17) on A. 
Using equation (2.21), the Heisenberg equation for operators has the limit 

(2.21) 

(2.22) 

The classical symbol used in (2.21) and (2.22) is defined by 

Ac,(z, z’) = lim A(z, 5). (2.23) 
N-CC 

The Hamiltonian H,,, which describes this limiting behaviour, is obtained as in (2.23). 
The behaviour of eigenstates in this limit constitutes the central theme of our study. 
The objective is to correlate the invariant structures arising in the classical limit with 
the stationary states y .  For this purpose, we use the generalised Husimi distribution 

(2.24) 

which is just (2.19) for the density operator. This definition associates with each 
wavefunction a distribution on with the following properties : 

(9 1 2 WJZ, z) 2 0. (2.25) 

The first inequality follows from Schwartz’ inequality applied to (2.24). 

(2.26) 

where d&) is the invariant measure on A. dp(z) depends on the group (Le., on the 
geometry of A) and sets the normalisation of Ww with respect to its limiting behaviour 
towards the classical distribution. For example, it is (l/nh)d2z for the Weyl W, group 
and [(2j+1)/n](d2z/(1+~Z)2) for the SU(2) group, where j is the spin quantum number. 
Equation (2.25) together with (2.26) suggest that Ww can be interpreted as a probability 
distribution. It represents the probability of observing the state in lz) which is a narrow 
phase space packet on A (however, some care must be taken in this interpretation due 
to the non-orthogonality of the coherent states). 

(iii) Energy localisation. Using (2.20) we can write approximately the Schrodinger 
equation H a  = EP as 

(2.27) 
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To order zero in 1/N the solution of this equation is 

w;o’ 2: h(H,,(z,Z) - E ) F ( z , i )  (2.28) 

that is, a delta function peaked on the quantised energy E .  The function F ( z , i )  
provides all the interesting information about the distribution on the energy shell that 
does not follow directly from energy conservation. If we include the next order (1/N) 
the delta function is smoothed [26,27] to a Gaussian peaked at the classical energy 
surface HCI(z, Z) = E .  

(iv) If other quantum constants of the motion ai exist such that [A,& = [&a,] = 
0, then the same argument shows that Wv, localises on each of the classical surfaces 
A,(z ,Z)  = ai .  If there are enough of these to make the classical motion integrable, 
then Ww will be peaked on the invariant tori. In the general case of a classically non 
integrable system, the general structure of F (z, i) is not known. 

The outcome of this procedure is then a mapping of an irreducible unitary repre- 
sentation of a Lie group into a classical phase space. This mapping has been called 
dequantisation and studied in the context of the time-dependent variational princi- 
ple [31]. It is the inverse procedure of the much more difficult problem of geometric 
quantisation [32], i.e. the finding of unitary irreducible representations associated with 
general symplectic manifolds. 

2.3. Poincari sections of quantum eigenstates 

As we show below, generalised Husimi distributions for eigenstates of time-independent 
Hamiltonians with two degrees of freedom are easily calculated. However, they are 
four-dimensional objects whose visualisation and graphical display are difficult. Just as 
in the classical counterpart, we circumvent this difficulty by defining projections and 
Poincare sections of the quantum distributions defined on 4. Classically, a Poincare 
map for a conservative system is defined by eliminating one variable on account of 
energy conservation and taking a fixed value for its canonical conjugate [33]. The 
dimension of phase space is lowered by two and time is eliminated completely while 
the sections are labelled by the energy. Quantum mechanically, we obtain a construction 
comparable to the above procedure by integrating a stationary distribution over one 
variable and fixing another one, which defines the plane of section. Thus, for example 

(2.29) 

defines a probability distribution in the variables (p l ,q l )  obtained in the section plane 
q2.  Other sections are defined in a similar fashion. In (2.29) we are using canonical 
coordinates (p, q )  which can always be defined from (z, Z) because of Darboux theo- 
rem [29]. An alternative definition is to restrict the distribution to the energy surface, 
i.e. define instead of (2.29) 

where E is the energy of the eigenstate Iw) and p , ( E , p , , q , , q 2 )  is obtained from the 
classical Hamiltonian. This is the definition used in references [34] and [35] to study the 
wavefunctions of oscillator systems in the Husimi or Wigner representation. Because 
the distribution in the semiclassical limit is sharply peaked on the energy shell, the 
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integration in (2.29) effectively picks up only contributions very close to it and the 
result of both definitions essentially coincide. 

Projections are obtained by integrating over two variables, i.e. 

p(q1342) j d p ~  dp2 wy(Pl,qI,P2,q2) (2.31) 

which projects the distribution on the plane (ql,q2) and provides a smoothed version 
of the wavefunction probability Iw(ql, q2)I2. 

3. W2 and SU(3) coherent states in actiobangle variables 

3.1. Coupled harmonic oscillator models. The group W2 

In this section we consider two-dimensional conservative systems whose Hamiltonian 
is written in terms of the W2 algebra 

[di,ij] = ifid, I 
i , j  = 1,2 (3.1) 

[4i,4jl = kj,?ij l  = 0. 

We illustrate in this well known case the general procedure described in section 2.2. 
The raising operators 

1 
a7 = - (Qi/bi - ibiji) 

fid3 
are used to define the coherent states 

1z1z2) = exp(zla: + z 2 a 9  10) (3.3) 

where a,lO) = 0 and the parameters b, define the frequency of the oscillator basis. 
The coadjoint orbits spanned by parameters (zl, z2) are simply four-dimensional 

planes and for a given value of fi  coincide with the classical phase space. The (p,q) 
coordinates are related to ( z ,  Z) by 

1 
zi = - (qi/bi - ibipi) . 

d2 
In the classical limit the Hamiltonian is 

while the norm function that determines the structure of the phase space is 

The calculation of (z1z21tp) is very simple when 

(3.4) 

(3.5) 

y )  is known in the oscillator basis 
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In fact, from (3.3) and (3.7) we can write 

by means of which the Husimi distribution (2.24) can be expressed as 

(3.8) 

(3.9) 

In this context it is convenient to introduce the action-angle variables of the oscillators 

which allows us to rewrite (3.9) as 

(3.11) 

It is worthwhile to analyse the structure of (3.11) because it recurs for all other groups. 
The wavefunction In, n 2 )  can be thought of as having sharply defined (and discrete) 
values of the actions finl and ftn,. Therefore the conjugate variables Oi are completely 
delocalised. To obtain a wavepacket localised both in action and angle (and therefore 
localised at a point (Ii, e,) in phase space where we are calculating the distribution) we 
need to take a narrow superposition of different states In, n 2 )  and add the appropriate 
phase exp(iniOi), as in (3.11). The structure of this equation will be valid for more 
general semisimple Lie groups. What changes from group to group is the exact shape 
of the wavepacket, i.e., the prefactors contained in the square roots. In the present case 
of the W, group, the smoothing of the ( n , n 2 / ~ )  wavefunction is Poisson, as pertains to 
variables bounded from below (both I ,  2 0 and ni 2 0). This is seen more clearly if we 
integrate over the angles to obtain the projection in action variables (cf equation (2.31)) 

2n 

P ( I , J ~ )  = de, de, W ~ ~ I , , ~ , , ~ ~ , ~ ~ )  

(3.12) 
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The projection of the distribution in terms of the continuous classical action variables 
I, is thus obtained by a Poisson smoothing of the discrete wavefunction probability 
I (n ,n21~)12 .  This smoothing will reveal more and more details of the classical structures 
as h + 0. For large quantum numbers the Poisson distribution approximates a gaussian 
centred at Ii = hn, and with a dispersion proportional to A. Thus the smoothing, while 
becoming infinitely sharp, will always involve many components of the wavefunction. 

In these variables, several planes of section can be used. Close to the integrable 
system described by the quantised tori (nl,n2), the more useful sections would be 8- 
sections obtained by integrating over an action, say I,, and fixing the conjugate angle, 
say to 8, = 0. These sections would then be (cf equation (2.29)) 

(3.14) 

However, when studying Hamiltonians very far from the integrable limit it does not 
matter which sections one considers and the I-sections are much more economical to 
compute. The reason is that the 8 integral can be done analytically and reduces by one 
the sums in (3.11).  For I-sections we compute the distribution as 

3.2. S U ( 3 )  models 

We are interested here in Hamiltonians which are written in terms of the nine generators 
( G i j ,  i, j = 0,1,2) of the U(3) group 

[Gi j ,  G,,] = djkGil - dilGk, ( i , j  = 0, 1,2). (3.16) 

We will only discuss the [N,O,O] irreducible representation of the group and 
follow here the standard notation for the unitary group used by Moshinsky [36]. The 
representation [ N ,  0, 01 is characterised by a minimum weight state 10) satisfying the 
conditions G,,IO) = NIO), G,,IO) = G,,IO) = 0 and G,,JO) = G,,/O) = G,,IO) = 0. The 
constraint G, + G,,  + G,, = N reduces the algebra to an SU(3) group. 

According to the general scheme described in section 2.2, we obtain the coherent 
states of this group applying the exponentials of the raising generators G,o, G,,, G,, 
to the minimum weight state of the representation. For the [N,O,O] representation 
the action of G,, is trivial and the generic six-dimensional coadjoint orbits of SU(3) 
reduce to simpler four-dimensional manifolds [31]. The coherent states for [ N ,  O,O] are 
therefore defined as 

whose norm is 

(z,z,Iz,z,) = (1 + z , f ,  + Z 2 Z 2 ) N .  (3.18) 
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For this representation, quantum mechanics occurs in a finite-dimensional Hilbert 
space whose basis can be labelled by two integers 

( N  - n ,  - n 2 ) !  
Gyp;; 10) 

In1n2) = J N!nl!n2! 

where 0 I n ,  + n2 I N. In terms of this basis the coherent states are given by 

(3.19) 

The symplectic structure is derived from (3.18) using the inverse of matrix (2.16) 

(3.21) 

This structure can be transformed to canonical form through the following transfor- 
mation 

(3.22) 

The significance of the l j  is easy to establish : they are the classical functions associated 
with the weight operators Gj j  

1 (z,z2IGjjIz1~2) - ZjZj 
1 .  = - - 

I N (z1z21z1z2) 1 + z tZ ,  + z2Z2' 

satisfying the following boundary conditions 

o l z j l l  

O I Z , + I , I I  

(3.23) 

(3.24) 

as follows from (3.23). 
The phase space is therefore of finite volume, which is a reflection of the compact- 

ness of the group. The classical limit is obtained for N -+ CO in which the discrete 
quantum numbers (n,/N, n2/N) become the continuous action variables (Il, 12) .  There- 
fore this limit can be thought of as an asymptotic property of the eigenvalues and 
eigenfunctions of a sequence of large finite matrices, without any truncations involved. 
This will be a general feature of compact groups. 

Using equations (3.18), (3.20) and definition (2.24), the Husimi distribution written 
in terms of the ( I i ,  8J variables takes the form 

w,u,, q , I , ,  8,) 

(3.25) 
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Projecting the Husimi distribution in the 1,12  plane we obtain 

(3.26) 

The comparison of equations (3.25)-(3.26) and equations (3.1 1)-(3.12) is very illumi- 
nating. The finite size of the representation has resulted merely in a change of the 
smoothing which is now trinomial instead of Poisson. In the large N limit this dif- 
ference is quite small (except near the boundaries of (3.24)). In fact both smoothings 
become Gaussian with a width l /& in this latter case. 

Just as in the W, case, one can consider either 8 or I sections. We have mainly 
studied the latter, which are given by 

N !  
n, ! ( N  - n l  - n,)! 

N 

1 , n ’  

(3.27) 

4. Numerical studies 

As examples of W, and SU(3) systems we present here a survey of results for the eigen- 
states of two conservative systems with two freedoms: (a) the Nelson [37] Hamiltonian 

and (b) the SU(3) Lipkin model [38] 

1 2 

H = 1 f iGi i  + - V 1 Gi. 
i=O i # j  

(4.1) 

In both cases the Hamiltonian is written in terms of the generators of the associated 
group. The Hamiltonian (4.1) is a modified Henon-Heiles potential typical of many 
molecular systems. It has been used to calculate numerically the families of periodic 
trajectories and their bifurcations [37]. The model represented by (4.2) is characteristic 
of nuclear shell model structure with single particle energies ei and a simplified two- 
body interaction. It has been studied in connection with many body approximation 
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techniques and semiclassical quantisation [39] and its spectral statistics have been 
analysed [40] . 

The classical Hamiltonians in action-angle variables are 

1 
P 

~ z ~ l ~ ~ ~  = hil + 41, + -I, COS, e,(i, COS, e, - 2 5 / 4 & ~ ~ ~ e 2 )  (4.3) 

and 

H:u'3' = -1  + I, + 21, + x ( i  - I, - I,)(I, 20, + I, COS 20,) + 1, COS 2(0, - el). 
(4.4) 

They were obtained as (cf equation (2.23)) 

using in each case the change of variables given in (3.10) and (3.22). The parameter A 
is l/fi for W, and N for SU(3). 

In (4.4) x = ( N  - l ) V  is the interaction parameter and it is held constant as 
N + x; the single particle energies are eo = - 1 ,  e l  = 0 and e, = 1. The SU(3) classical 
Hamiltonian represents the time-dependent Hartree-Fock [39] approximation to the 
quantum fermion dynamics (4.2). 

We have computed the projections and Poincare sections of the associated Husimi 
distribution for the eigenfunctions of these two models using the equations of sections 
3.1 and 3.2; in the case of SU(3) we have diagonalised the Hamiltonian for x = 10 and 
N = 80, which corresponds to a basis of dimension 861. For the W, Nelson potential 
we take p = 0.1, fi  = 0.01 and diagonalised on a truncated basis of dimension 806. In 
both cases the (++) parity subspace was considered. 

The aim of this section is to provide some examples of the classical-quantum 
correspondence between stationary states and classical invariant objects for these two 
Hamiltonians. For the values of p and x we have chosen, both Hamiltonians present, 
from the classical point of view, a mixed phase space structure with regular and chaotic 
trajectories forming an intricate mixture of stable and unstable trajectories. A very 
detailed study of the eigenfunctions of the SU(3) [41] and Nelson [42] Hamiltonians 
and their correspondence with classical structures has been completed and will be 
published separately. 

In order to associate a definite classical trajectory with a given eigenstate we locate 
the maximum of the four-dimensional distribution and propagate a classical trajectory 
from it as an initial condition. This procedure allows a one-to-one association of a 
wavefunction with a single classical trajectory, which can be said to 'dominate' the 
quantum state. Secondary maxima can be used to identify other structures. 

In figures 1 to 3 we show some selected wavefunctions of the SU(3) model. 
We have chosen to display the distributions as scatter plots with the density of 
points proportional to their value; this method emphasises the gross features of the 
distribution. The projection is plotted on a triangle in accordance to the boundaries 
established by (3.24). 

Figure 1 displays the eigenstates associated with a periodic trajectory. It belongs to 
a classical family contained in the invariant plane I, = 0. In the triangles we show the 
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Figure 1. Some SU(3) eigenstates associated with the periodic family of trajectories at 
12 = 0. The action variables l i  have the range 0 5 l i  5 1, while the variables appearing 
in the circles are 11 (radius) and 01 (angle) (these remarks are valid for all the figures of 
the paper). The triangles show the wavefunctions and the circles their Poincarb section in 
the plane 12 = 0. For the energies of eigenstates (c), (d) and (e) the associated classical 
trajectory is unstable. 
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projections in the l ,l ,  plane of the Husimi distribution, while the circles on the right 
display the quantum Poincare sections obtained in the polar variables 1,,8,  with the 
plane of section I ,  = 0. In the Poincare section the trajectory does not show up as a 
set of fixed points because the plane of section is chosen so as to contain the entire 
trajectory. 

Classically, this is a very simple family which exists in the invariant plane 1, = 0 
because of symmetry. Wavefunctions corresponding to this family are characterised 
by a strong concentration of probability in the I, = 0 axis. The family is stable at 
the beginning (low energies, figure l ( a )  and l(6)) and then becomes unstable, a fact 
reflected in the wavefunction by the spreading from the I ,  = 0 axis (figures 1 ( c )  to 1 ( e ) )  : 
the wavefunctions are still strongly concentrated on the I ,  = 0 axis but now there is a 
considerable probability out of it. States ( a )  and ( e )  are the first and last states of a large 
number of states associated with this family. This set of non-statistical wavefunctions 
concentrated on unstable periodic trajectories even in regions of phase space where 
the system has large chaotic regions are to be compared with the ones observed by 
Heller [lo] in the chaotic stadium billiard. The states that show such concentration are 
very regularly spaced at energies given closely by a Bohr-Sommerfeld rule. The striking 
feature is that both the large amplitudes and the approximate quantisation persist long 
after the classical family has become unstable. A detailed account of this behaviour is 
in progress and will be presented elsewhere. We have found at least two other families 
of wavefunctions associated with periodic trajectories lying on the invariant planes 
I ,  =Oand  l - I , - I , = O .  

In figure 2(a)  and 2(b)  we show two wavefunctions associated with tori. In the 
upper circle of each figure we plot the quantum Poincare section in the polar variables 
l l , d , .  The plane of section is indicated by a dotted line in the corresponding triangle. 
In the bottom part of each figure we show the projection and section for the classical 
trajectory dominating the wavefunction. An interesting feature of these sections is 
the appearance of two separate tori in the wavefunctions, as opposed to only one in 
the classical counterpart. Of course the symmetric classical torus also exists and the 
observed quantum effect is a coupling of these two Bohr-quantised classical tori due to 
tunnelling. The calculation of tunnelling probabilities between invariant structures in 
the case of generic non-integrable Hamiltonians remains as a challenging and important 
theoretical problem. 

Figure 3 is similar to figure 2 but for two chaotic wavefunctions. The associated 
trajectories fill a three-dimensional volume in phase space as can be seen in the 
classical section. The comparison of the quantum and classical projections shows that 
the chaotic trajectory accounts for the main features of the wavefunction. In figure 4 
we show for the energy of the wavefunction of figure 3(b)  the accessible region in 
the section allowed by energy conservation. Clearly the wavefunction occupies most 
of the available phase space. The overall pattern is very similar, except for a small 
non-occupied region observed in the quantum and classical sections of figure 3(b) 
close to the origin. Numerical experiments indicate that this localisation is due to a 
partial barrier (cantorus) that restrict the spreading of the wavefunction over the entire 
accessible energy shell. In fact, if we follow the classical trajectory of figure 3(b) for 
longer times, the motion finally enters the non-occupied region. 

For the Nelson potential, features concerning periodic trajectories, tori and chaotic 
regions are quite similar. A simple family of periodic trajectories also exists because 
of symmetry in the x = 0 plane. The period-doubling and in general the n-tupling 
bifurcations of this family has been extensively studied in [37], which also starts as 
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Figure 2. Two SU(3) eigenstates associated with tori. The broken line indicates the plane 
employed for the section shown in the circles. The quantum distributions and classical 
dominant trajectories are shown in the upper and lower part of each figure, respectively. 
Both eigenfunctions present a tunnelling effect between tori. 

a stable trajectory, becoming unstable at a period doubling at higher energies. Many 
states heavily scarred by this family have been found up to energies well into the 
unstable region. The tori have been studied at low energies in [42]. 

In figure 5 we show a wavefunction of the Nelson potential that presents a peculiar 
behaviour as it is dominated by two different periodic trajectories belonging to different 
families. 

The projection of the Husimi distribution in figure 5(a) shows two distinct structures 
that we have labelled A and B. The projection of the classical trajectories that start 
from the maxima of each of these structures are also displayed and turn out to be 
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Figure 3. Two SU(3) eigenstates associated with a chaotic region. The classical and 
quantum Poincari sections fill three-dimensional volumes. See figure 2 for details. 

periodic (the classical projection of the A-structure appears as a single dot in the I , I ,  
plane). The Poincar6 section (both classical and quantum) shown in figure 5(b) was 
done at I, = 8 (dotted line in figure 5(a))  and shows the A structure as a central peak 
and the structure B as four smaller peaks. The intersections of the classical trajectories 
with that plane of section are indicated by crosses. In both cases we were able to 
identify these periodic orbits with the families studied in [37]: trajectory A belongs to 
the vertical family and B is a member of the I family at low energy. the reader is 
referred to [37] for more details on the organisation of the classical trajectories. 
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Figure 4. The available classical phase space corresponding to the section of figure 3(b). 
The small difference near the Centre of the section between this figure and figures 3(a) and 
3(b) is interpreted in the text as due to a broken torus. 

Figure 5. Nelson wavefunction showing the presence of two periodic trajectories A and 
B.  Part (a) displays (superimposed) the quantum (scatter dots) and classical (continuous 
lines) projections. The periodic orbit A appears as a single dot in these variables. The 
quantum and classical sections (scatter dots and crosses respectively), made through the 
plane indicated by a broken line on part (a), are shown on (b).  

5. Conclusion 

The aim of this paper has been to explore and develop the generalised Husimi 
distribution as a tool for the phase space representation of quantum mechanics. We 
have focused our attention upon conservative systems with two freedoms, which are 
generically non-integrable. The methods are however very general and are just based 
on the existence of an underlying group structure and associated coherent states for 
the transition to the classical limit. 

The parallel treatment of the well known case of W, and the less known case of 
SU(3) emphasises that the methods are readily applicable to many situations where a 
group structure is apparent. The main limitation will be of course the dimension of the 
phase space as numerical difficulties increase very rapidly with the number of degrees 
of freedom. 

The study of the four dimensional distributions is made comprehensible and easily 
accessible to computation using their projections and Poincare sections. We find that the 
action-angle variables for the distributions are the most appropriate for a comparison 
of quantum and classical results. In particular, the projections give a smoothed version 
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of the square of the wavefunction and the smoothing depends on the particular group. 
In the two systems that we studied we have found that the gross features of most 

wavefunctions are explained by a single trajectory, propagated classically from the 
maximum of the distribution. In the integrable regions this trajectory is, as expected, 
on a torus, but in the chaotic regions we find many wavefunctions strongly scarred by 
a single unstable periodic orbit. 

Exceptionally we find, as in figure 5, that a wavefunction is made up of two (or 
more) objects of similar magnitude. We have also found evidence for the existence of 
cantori which limit the regions of phase space where the chaotic wavefunctions spread. 
This is an important question which deserves a more thorough investigation. The 
whole picture is, of course, much more complicated and a study of the distributions 
at very small amplitude should reveal the presence of other phase space structures. 
However, the details will be smeared unless much lower values of fi (or 1/N) can be 
computationally achieved. 

Acknowledgments 

The work presented in this paper owes an essential part to innumerable discussions 
with M Baranger. His wisdom and encouragement are gratefully acknowledged. We 
are also grateful to A Pages for numerical calculations on the Nelson potential. 

References 

Berry M V 1983 Chaotic Behavior of Deterministic Systems (Amsterdam: North-Holland) p 171 
Pechukas P 1983 Phys. Rev. Lett .  51 943 
Berry M V 1981 Ann. Phys., N Y  131 163 
Berry M V and Tabor M 1977 Proc. R .  Soc. A 356 375 
Berry M V 1985 Proc. R .  Soc. A 400 229 
Bohigas 0, Giannoni M J and Schmit C 1984 Phys. R e t .  Lett .  52 1 
Gutzwiller M C 1982 Physica D 5 183 
Berry M V 1985 Proc. R .  Soc. A 400 209 
Hannay J H and Ozorio de Almeida A M 1984 J. Phys. A: Math. Gen. 17 3429 
Balazs N L and Voros A 1986 Phys. Rep. 43 109 
Wintgen D 1987 Phys. Rev. Lett .  58 1589 
Heller E J 1984 Phys. Rec. Le t t .  53 1515 
OConnor P W and Heller E J 1988 Phys. Rea. Lett .  61 2288 
Brown R C and Wyatt R E 1986 Phys. R e t .  Lett .  57 1 
Geisel T, Radons G and Rubner J 1986 Phys. Reo. Lett .  57 2883 
Gibson L L, Schatz G C, Ratner M A and Davis M J 1987 J. Chem. Phys. 86 3263 
Davis M J 1988 J. Phys. Chem. 92 3124 
Gutzwiller M C 1971 J. Math. Phys.  12 343 
Bogomolny E B 1988 Physica D 31 169 
Berry M V 1989 Proc. R.  Soc. A 423 219 
Ozorio de Almeida A M 1989 Nonlinearity 2 519 
Robnik M 1989 Preprint Institute for Theoretical Physics, University of California, Santa Barbara 
Yaffe L G 1982 Ret.. Mod.  Phys. 54 407 
Perelomov A 1986 Generalized Coherent States and their Applications (New York : Springer) 
Husimi K 1940 Proc. Phvs. Math. Soc. Japan 22 264 
Wigner E 1932 Phys. Ret.. 40 749 
Balazs N L and Jennings B K 1984 Phys. Rep. 104 347 
Hillery M, OConnel R F, Scully M 0 and Wigner E P 1984 Phys. Rep. 106 121 
Takahashi K 1986 J. Phys. Soc. Japan 55 762 



1764 P Leboeuf and M Saraceno 

Kurchan J, Leboeuf P and Saraceno M 1989 Phys. Rev. A 40 6800 
Berry M V 1977 Phil. Trans. R. Soc. 287 237 
Amol'd V I 1976 Methodes Mathimatiques de la Mecanique classique (Moscow: Mir) 
Klauder J R 1967 J .  Math. Phys. 8 2392 
Mckenna J and Klauder J R 1964 J .  Math. Phys. 5 878 
Bargmann V 1961 Commun. Pure App. Math. XIV 187 
Kramer P and Saraceno M 1981 Geometry of the Time Dependent Principle in Quantum Mechanics 

Kostant B 1970 Lectures in Modern Analysis and Applications I l l  (Lecture Notes in Mathematics 170)  

Kirillov A A 1976 Elements of the Theory of Representations (Berlin: Springer) 
Lichtenberg A J and Lieberman M A 1984 Regular and Stochastic Motion (New York: Springer) 
Hutchinson J S and Wyatt R E 1980 Chem. Phys. Lett. 72 378 
Weissman Y and Jortner J 1981 Phys. Lett. A83 55; 1982 J .  Chem. Phys. 77 1486 
Moshinsky M 1968 Group Theory and the Many Body Problem (New York: Gordon & Breach) 
Baranger M and Davies K T R 1987 Ann. Phys., Paris 177 330 
Li S Y, Klein A and Dreizler R M 1970 J .  Math. Phys. 11 975 
Williams R D and Koonin S E 1982 Nucl. Phys. A391 72 
Meredith D C, Koonin S E and Zirnbauer M R 1988 Phys. Rev. A 37 3499 
Leboeuf P and Saraceno M 1990 Phys. Rev. A at press 
Leboeuf P 1989 PhD Thesis Universidad de Buenos Aires (unpublished) 
Mahoney J H 1987 PhD Thesis M I T  (unpublished) 

(Lecture Notes in Physics 140)  (New York: Springer) 

ed C T Taam (Berlin: Springer) p 87 


